MAVS Is Essential for Primary CD4+ T Cell Immunity but Not for Recall T Cell Responses following an Attenuated West Nile Virus Infection.
نویسندگان
چکیده
The use of pathogen recognition receptor (PRR) agonists and the molecular mechanisms involved have been the major focus of research in individual vaccine development. West Nile virus (WNV) nonstructural (NS) 4B-P38G mutant has several features for an ideal vaccine candidate, including significantly reduced neuroinvasiveness, induction of strong adaptive immunity, and protection of mice from wild-type (WT) WNV infection. Here, we determined the role of mitochondrial antiviral signaling protein (MAVS), the adaptor protein for RIG-I-like receptor in regulating host immunity against the NS4B-P38G vaccine. We found that Mavs-/- mice were more susceptible to NS4B-P38G priming than WT mice. Mavs-/- mice had a transiently reduced production of antiviral cytokines and an impaired CD4+ T cell response in peripheral organs. However, antibody and CD8+ T cell responses were minimally affected. NS4B-P38G induced lower type I interferon (IFN), IFN-stimulating gene, and proinflammatory cytokine responses in Mavs-/- dendritic cells and subsequently compromised the antigen-presenting capacity for CD4+ T cells. Interestingly, Mavs-/- mice surviving NS4B-P38G priming were all protected from a lethal WT WNV challenge. NS4B-P38G-primed Mavs-/- mice exhibited equivalent levels of protective CD4+ T cell recall response, a modestly reduced WNV-specific IgM production, but more robust CD8+ T cell recall response. Taken together, our results suggest that MAVS is essential for boosting optimal primary CD4+ T cell responses upon NS4B-P38G vaccination and yet is dispensable for host protection and recall T cell responses during secondary WT WNV infection.IMPORTANCE The production of innate cytokines induced by the recognition of pathogen recognition receptors (PRRs) via their cognate ligands are critical for enhancing antigen-presenting cell functions and influencing T cell responses during microbial infection. The use of PRR agonists and the underlying molecular mechanisms have been the major focus in individual vaccine development. Here, we determined the role of mitochondrial antiviral-signaling protein (MAVS), the adaptor protein for RIG-I like receptor in regulating host immunity against the live attenuated West Nile virus (WNV) vaccine strain, the nonstructural (NS) 4B-P38G mutant. We found that MAVS is important for boosting optimal primary CD4+ T cell response during NS4B-P38G vaccination. However, MAVS is dispensable for memory T cell development and host protection during secondary wild-type WNV infection. Overall, these results may be utilized as a paradigm to aid in the rational development of other efficacious live attenuated flavivirus vaccines.
منابع مشابه
Extrinsic MAVS signaling is critical for Treg maintenance of Foxp3 expression following acute flavivirus infection
Given the rapid spread of flaviviruses such as West Nile virus (WNV) and Zika virus, it is critical that we develop a complete understanding of the key mediators of an effective anti-viral response. We previously demonstrated that WNV infection of mice deficient in mitochondrial antiviral-signaling protein (MAVS), the signaling adaptor for RNA helicases such as RIG-I, resulted in increased deat...
متن کاملCD8 and CD4 T Cells in West Nile Virus Immunity and Pathogenesis
CD4 and CD8 T lymphocytes are adaptive immune cells that play a key role in the immune response to pathogens. They have been extensively studied in a variety of model systems and the mechanisms by which they function are well described. However, the responses by these cell types vary widely from pathogen to pathogen. In this review, we will discuss the role of CD8 and CD4 T cells in the immune ...
متن کاملKey role of T cell defects in age-related vulnerability to West Nile virus
West Nile virus (WNV) infection causes a life-threatening meningoencephalitis that becomes increasingly more prevalent over the age of 50 and is 40-50x more prevalent in people over the age of 70, compared with adults under the age of 40. In a mouse model of age-related vulnerability to WNV, we demonstrate that death correlates with increased viral titers in the brain and that this loss of viru...
متن کاملMAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis.
UNLABELLED West Nile virus (WNV) is the most important cause of epidemic encephalitis in North America. Innate immune responses, which are critical for control of WNV infection, are initiated by signaling through pathogen recognition receptors, RIG-I and MDA5, and their downstream adaptor molecule, MAVS. Here, we show that a deficiency of MAVS in hematopoietic cells resulted in increased mortal...
متن کاملIL-1R1 is required for dendritic cell–mediated T cell reactivation within the CNS during West Nile virus encephalitis
Infections of the central nervous system (CNS) with cytopathic viruses require efficient T cell responses to promote viral clearance, limit immunopathology, and enhance survival. We found that IL-1R1 is critical for effector T cell reactivation and limits inflammation within the CNS during murine West Nile virus (WNV) encephalitis. WNV-infected IL-1R1(-/-) mice display intact adaptive immunity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 91 6 شماره
صفحات -
تاریخ انتشار 2017